
Chapter 3
Design theory for Relational

Databases

Main reference:

A First Course in Database Systems (and associated material) by

J. Ullman and J. Widom, Prentice-Hall
1

Université Grenoble Alpes
09/03/2023

Bahareh Afshinpour

bahareh.afshinpour@univ-grenoble-alpes.fr

Left outer join- Right outer join

Examples

Example
• Find the ID of the loan with the largest amount.

• Hard to find the loan with the largest amount! (At least, with the tools we have so far…)

• Much easier to find all loans that have an amount smaller than some other loan

• Then, use set-difference to find the largest loan

6

Aggregation operators (summarize)

• Many operators we can apply to set or bags of numbers or strings.

• They are used to summarize or aggregate the values in one column of relation

• For example:

• SUM

• AVG

• MIN and MAX (numerical values and character-string values)

• COUNT

7

To retrieve the number of person and their salary

Count(ISBN) R AVERAGE(SALARY) R

8

Chapter 3

• We can examine the requirements for a database and define relations
directly, without going through a high-level intermediate stage.

• In this chapter:
• Identify the problems that are caused in some relation schemas

• Normalization

9

x y

1 6

2 7

5 10

3 22

10

x y

1 6

2 7

5 10

2 22

X→y

Y is determined by x

Determinant Dependend

X=2 y=?

X=2 y=7

X=2 y=?

In the first relation, If I tell you the value of X
you can find the value of Y

Functional Dependencies

So, based on relation we can find the FD.

X and Y can be a set of attributes.

Functional Dependencies

• If two tuples of R agree on all the attributes A1,A2,A3, …, An then they must also
agree on all of another list of attributes B1,B2,…,Bm.

• We write this FD formally as A1A2…An → B1B2… Bm and say that

“A1,A2,….,An functionally determine B1,B2,…,Bm”

If one set of attributes in a table determines
another set of attributes in the table, then
the second set of attributes is said to be
functionally dependent on the first set of
attributes.

11

Examples

12

Example: “no two courses can meet in the same room at the same time”
tells us: hour, room -> course

Example2

As we shall see, the schema for MOVIES1 is not a good design.
Title , year → length, genre, StudioName
This FD says that two tuples have the same value in their TITLE and Year components, the these
two tuples must also have

• the same values in their Length component,
• the same values in their genre components,
• the same values in their studioName components

Thus, we expect that given
a title and year, there is a
unique movie.

Title, year→ starName

13

• FD says something about all possible instances of the relation, not
about one of its instances.

14

X→Y
IF tuple(i).x=tuple(j).x then

tuple(i).y=tuple(j).y

X y

1 6

2 7

1 6

3 22

x y

1 6

2 7

1 6

2 22

Functional Dependencies

Only we need to find tuples
with two equal value, then
check the IF statement

If y for both of them is same
so x->y is FD.

Keys of Relations

• We say a set of one or more attributes {A1,A2,A3,…An} is a key for a relation R if:

1. Those attributes functionally determine all other attributes of a relation .
It is impossible for two distinc tuples of R to agree on all A1,A2,A2,….,An

2. No proper subset of {A1,A2,A3,…An} functionally determines all other
attributes of R;

a key must be minimal.

-{title, year, starname} form a key
1- two different tuples can not agree on all of title, year
and starname
2-no proper subset of it functionally determines all
other attributes ({title , year} is not a key)

Sometimes a relation has more than one key.
15

16

SuperKey

• A set of attributes that contain a key is called superkey.

• Every superkey satisfies the first condition of a key.

• Thus every key is a superkey.

• However, some superkeys are not (minimal)keys.

• A superkey need not satisfy the second condition :minimality.

17

Maximum number of
super key: 2N-1

Example3

18

In general, if we have ‘N’ attributes with one candidate key then the number of possible superkeys is 2(N – 1).

Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a3 a4” then the possible
number of super keys?
Super keys of(a1 a2) + Super keys of(a3 a4) – Super keys of(a1 a2 a3 a4)
⇒ 2(N – 2) + 2(N – 2) - 2(N – 4)

Let a Relation R have attributes {a1, a2, a3,…, an} and the candidate keys are “a1 a2”, “a1 a3” then the possible number of s
Super keys of (a1 a2) + Super keys of (a1 a3) – Super keys of(a1 a2 a3)
⇒ 2^(N – 2) + 2^(N – 2) – 2^(N – 3)

A B C D

1 2 3 1

2 2 7 1

3 2 7 1

4 7 7 1

5 7 3 1

6 7 3 8

19

Example

How many possible superkeys do we have in this example?
- {A} is a super key. (the values are not repeated)
- So , {A,B} is superkey, since A is a superkey.
- {A,C} , {A,D},{A,B,C},{A,C,D},{A,B,D},{A,B,C,D}
- Order does not matter
- Is {B}is a super key? No {C}No {D}No
- {B,C,D} No. So subset of {B,C,D} can not be a superkey
- Answer is 8

Candidate Key

• Is a superkey whose proper subset is not a superkey. (minimal super key)

20

A B C

1 6 3

2 6 5

3 1 3

4 1 5

SK= {A},{A,B},{A,C},{A,B,C}
{B} OR {C} NO
SK={B,C}
SK= {A},{A,B},{A,C},{A,B,C}, {B,C}

proper subset :
Suppose X1={1,2,3} and X2={1,2}
X2 is subset of x1 if every member of X2 must be member of X1
X2 is proper subset of x1

First x2 is subset of x1
But x1 is not subset of x2

{A,B,C} : WHOSE proper subset are {A,B}, {B,C},{A,C},{A}, {B}, {C} CK=NO SOME ARE SUPERKEYS
{A,C}: WHOSE proper subset are {A},{C} CK=NO SOME ARE SUPERKEYS
{A}: CK=YES {B,C}: WHOSE proper subset are{B} ,{C} none of its proper subset is sk CK=YES

So every CK is a SK
But every SK is not a CK

Rules about Functional Dependencies

• The ability to discover additional FD ‘s is essential when we discuss
the design of good relation schemas

21

1- Reasoning about Functional Dependencies

2- The splitting/combining rule

• However, there is no splitting rule for left sides

22

Derivation rules
• X, Y, Z are subsets of U

• Reflexivity

• if X Y U then Y --> X

• Augmentation

• if X-->Y and Z U then X,Z -->Y,Z

• Transitivity

• if X -->Y and Y --> Z then X --> Z

23

• Pseudo - transitivity
• if X --> Y and Y,W --> Z then X,W --> Z

• Union
• if X --> Y and X --> Z then X --> Y, Z

• Decomposition
• if X --> Y and Z Y then X --> Z

Anomalies

• Problems such as redundancy that occur when we try to cram too
much into a single relation are called anomalies:

1. Redundancy
• Information may be repeated unnecessarily in several tuples.

2. Update anomalies
• We may change information in one tuple but leave the same information

unchanged in another.

3. Deletion anomalies
• If a set of values becomes empty, we may lose other information as a side

effect.

24

Examples

• Update anomaly: If we found that star wars is really 125 minutes long, we might
carelessly change the length in the first tuples but not in the second and third
tuples.

25

Redundancy

Normalization Algorithms

26

Levels of Normalization

• Levels of normalization based on the amount of redundancy in
the database.

• First Normal Form (1NF)

• Second Normal Form (2NF)

• Third Normal Form (3NF)

• Boyce-Codd Normal Form (BCNF)

• Fourth Normal Form (4NF)

• Fifth Normal Form (5NF)

• Domain Key Normal Form (DKNF)

27

Most databases should be 3NF or BCNF in order to avoid the database anomalies.

Each higher

level is a

subset of the

lower level

First normal form

• A relation schema is in first normal form (1 NF) if any attribute has an
atomic value.

• 1:Atomic value : It cannot be decomposed into two or more component

28

SID Name Add Tel

1 x1 F1,a1,b1 T1,T2

2 x2 F1,a2,b5 T5

3 x3 F2,a3,b4 T6,T3

It is not
atomic

-Create separate column for each member of composite attribute
-Make two or more different tuples for each multi-value attributes
- Define Fk

- 2:In first normal form : A column should contain values for the same domain.

- 3:Each column should have unique name

- 4: NO ordering, No duplicate rows

Closure of a set of FDs (F+)

• The closure of F, said F+, is the set of all FD that can be derived from F

• Using attributes closure can help to answer , it is a candidate key or not

• Then by finding a candidate key we can solve the 2NF , 3NF , ….

29

R(A,B,C,D,E,F) FD={A->B , B->C, C->D, D->E}
We can use rules and find more FD
A->B, B->C ➔ A->C
A->A (Reflexivity)
A->C, C->D ➔ A->D
A->D, D->E ➔ A->E
A->ABCDE (splitting/merge)

x is a set of attribute
X+ contains set of attributes determined by X

A+={A,B,C,D,E}

30

R(A,B,C,D,E) FD={A->B , B->C, C->D, D->E}

AD+=?
AD->A
AD->D
A->B ➔ AD->BD
AD->BD ➔ AD->B , AD->D
AD->B, B->C ➔ AD->C
AD+={A,B,D,C,E}

CD+

{C,D, ….}
D->E
CD+={C,D, E}
B+={B,C,D,E}

Superkey
Set of attributes whose closure contains all

attributes of a given relation

A+ and AD+ are SK

